ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В языке племени АУ две буквы – "a" и "y". Некоторые последовательности этих букв являются словами, причём в каждом слове не меньше одной и не больше 13 букв. Известно, что если написать подряд любые два слова, то полученная последовательность букв не будет словом. Найдите максимальное возможное количество слов в таком языке.

Вниз   Решение


Найдите объём наклонной треугольной призмы, у которой площадь одной из боковых граней равна S , а расстояние от плоскости этой грани до противолежащего ребра равно d .

ВверхВниз   Решение


Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

ВверхВниз   Решение


На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.

ВверхВниз   Решение


Пусть     – производящая функция последовательности чисел Каталана. Докажите, что она удовлетворяет равенству

C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике.

ВверхВниз   Решение


Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?

ВверхВниз   Решение


Представьте себе, что Землю "раскатали в колбаску" так, чтобы она достала до Солнца.
Какой толщины будет эта "колбаска"? Постарайтесь ошибиться не более чем в 10 раз.

ВверхВниз   Решение


В параллелепипеде ABCDA1B1C1D1 грань ABCD – квадрат со стороной 5, ребро AA1 также равно 5, и это ребро образует с рёбрами AB и AD углы 60o . Найдите диагональ BD1 .

ВверхВниз   Решение


Докажите, что если  0 < a1 < a2 < ... < a8 < a9,  то   < 3.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 168]      



Задача 97795

Темы:   [ Средние величины ]
[ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 8,9

Пешеход шёл 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость за всё время равна 5 км/час?

Прислать комментарий     Решение

Задача 107698

Темы:   [ Средние величины ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8,9

Может ли среднее арифметическое 35 целых чисел равняться 6,35?

Прислать комментарий     Решение

Задача 65781

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 8,9,10,11

Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано.

Либо найдите заляпанные вареньем числа, либо докажите, что Балаганов ошибся.

Прислать комментарий     Решение

Задача 79565

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 8

Докажите, что если  0 < a1 < a2 < ... < a8 < a9,  то   < 3.

Прислать комментарий     Решение

Задача 88039

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 6,7,8

В соревновании участвовали 50 стрелков. Первый выбил 60 очков; второй – 80; третий – среднее арифметическое очков первых двух; четвёртый – среднее арифметическое очков первых трёх. Каждый следующий выбил среднее арифметическое очков всех предыдущих. Сколько очков выбил 42-й стрелок? А 50-й?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .