ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше проигравшего.
  а) Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
  б) Докажите, что в пункте а) число ¾ нельзя заменить на меньшее.

   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1110]      



Задача 73694

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
Сложность: 5
Классы: 7,8,9

Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?

Прислать комментарий     Решение

Задача 77935

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле ]
Сложность: 5
Классы: 10,11

Автобусный маршрут содержит 14 остановок (считая две конечные). В автобусе одновременно могут ехать не более 25 пассажиров. Доказать, что во время поездки автобуса из одного конца в другой
  a) найдутся восемь таких различных остановок A1, B1, A2, B2, A3, B3, A4, B4, что ни один пассажир не едет от A1 до B1, ни один пассажир не едет от A2 до B2, ни один пассажир не едет от A3 до B3 и ни один пассажир не едет от A4 до B4;

  б) может оказаться, что пассажиры едут таким образом, что не существует десяти различных остановок A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, которые обладали бы аналогичными свойствами.

Прислать комментарий     Решение

Задача 78045

Темы:   [ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.
Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

Прислать комментарий     Решение

Задача 98312

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10

В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
  а) сумма всех чисел в выбранных строках равна 0;
  б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)

Прислать комментарий     Решение

Задача 98486

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9

В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше проигравшего.
  а) Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
  б) Докажите, что в пункте а) число ¾ нельзя заменить на меньшее.

Прислать комментарий     Решение

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .