ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 167]      



Задача 102999

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7

  – У меня зазвонил телефон.
  – Кто говорит?
  – Слон.
  А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?

Прислать комментарий     Решение

Задача 30330

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки ]
Сложность: 2+
Классы: 7,8,9

Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

Прислать комментарий     Решение

Задача 30696

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Прислать комментарий     Решение

Задача 30698

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Прислать комментарий     Решение

Задача 65953

Темы:   [ Десятичная система счисления ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .