ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 167]      



Задача 60401

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

При игре в преферанс каждому из трёх игроков раздают по 10 карт, а две карты кладут в прикуп. Сколько различных раскладов возможно в этой игре? (Считаются возможные раздачи без учета того, что каждые 10 карт достаются конкретному игроку.)

Прислать комментарий     Решение

Задача 60407

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10

Сколькими способами можно составить букет из 17 цветков, если в продаже имеются гвоздики, розы, гладиолусы, ирисы, тюльпаны и васильки?

Прислать комментарий     Решение

Задача 116600

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 8,9,10

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что  mn?

Прислать комментарий     Решение

Задача 116990

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

Прислать комментарий     Решение

Задача 30705

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8

Сколько существует десятизначных чисел, сумма цифр которых равна   а) 2;   б) 3;   в) 4?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .