ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 35786

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Криптография ]
Сложность: 3
Классы: 8,9,10

Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово.

Прислать комментарий     Решение

Задача 35745

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметика остатков (прочее) ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

  На каждой из трёх осей установлено по одной вращающейся шестерёнке и неподвижной стрелке. Шестеренки соединены последовательно. На первой шестерёнке 33 зубца, на второй – 10, на третьей – 7. На каждом зубце первой шестерёнки по часовой стрелке написано по одной букве русского языка в алфавитном порядке:

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я.
  На зубцах второй и третьей шестерёнки в порядке возрастания по часовой стрелке написаны цифры от 0 до 9 и от 0 до 6 соответственно. Когда стрелка первой оси указывает на букву, стрелки двух других осей указывают на цифры.
  Буквы сообщения шифруются последовательно. Зашифрование производится вращением первой шестерёнки против часовой стрелки до первого попадания шифруемой буквы под стрелку. В этот момент последовательно выписываются цифры, на которые указывают вторая и третья стрелки. В начале шифрования стрелка 1-го колеса указывала на букву А, а стрелки 2-го и 3-го колес – на цифру 0.
  Зашифруйте слово  О Л И М П И А Д А.

Прислать комментарий     Решение

Задача 35761

Темы:   [ Ребусы ]
[ Уравнения в целых числах ]
[ Криптография ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 10,11

Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.

Прислать комментарий     Решение

Задача 35699

Темы:   [ Группа перестановок ]
[ НОД и НОК. Взаимная простота ]
[ Криптография ]
Сложность: 4-
Классы: 9,10,11

Шифрпреобразование простой замены в алфавите  A = {a1, a2, ..., an},  состоящем из n различных букв, заключается в замене каждой буквы шифруемого текста буквой того же алфавита, причём разные буквы заменяются разными. Ключом шифра простой замены называется таблица, в которой указано, какой буквой надо заменить каждую букву алфавита A. Если слово СРОЧНО зашифровать простой заменой с помощью ключа:

то получится слово ВЗДАБД. Зашифровав полученное слово с помощью того же ключа еще раз, получим слово ЮШЫЧЯЫ. Сколько всего различных слов можно получить, если указанный процесс шифрования продолжать неограниченно?

Прислать комментарий     Решение

Задача 35742

Темы:   [ Теория алгоритмов (прочее) ]
[ Ребусы ]
[ Криптография ]
Сложность: 4
Классы: 9,10,11

Исходное сообщение, состоящее из букв русского алфавита и знака пробела (-) между словами, преобразуется в цифровое сообщение заменой каждого его символа парой цифр согласно следующей таблице: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline А & Б & В & Г & Д & Е & Ж & З & И & К & Л & М & Н & О & П \\ \hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Р & С & Т & У & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я & - \\ \hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline \end{tabular} Для зашифрования полученного цифрового сообщения используется отрезок некоторой последовательности с периодом 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно, с какого места начинается последовательность). При зашифровании каждая цифра сообщения складывается с соответствующей цифрой отрезка и заменяется последней цифрой полученной суммы. Восстановите сообщение: 2339867216458160670617315588 (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .