ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 ? k ? 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3. Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5. Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3). Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно - например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел. Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых. Формат входных данных Во входном файле записаны два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9). Формат выходных данных В выходной файл выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде: n=a1+a2+...+am Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30). Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным. Выходной файл не должен содержать пробелов. Примеры
(Для знакомых с основами анализа; сообщил
А. Г.Кушниренко) Дополнить алгоритм вычисления значения
многочлена в заданной точке по схеме Горнера вычислением
значения его производной в той же точке.
(Из книги Д. Гриса) Дан массив целых чисел
x[1]..x[m+n], рассматриваемый как соединение двух его
отрезков: начала x[1]..x[m] длины m и конца
x[m+1]..x[m+n] длины n. Не используя дополнительных
массивов, переставить начало и конец.
(Число действий порядка
m + n.)
Решить предыдущую задачу, если требуется, чтобы число
действий (выполняемых операторов присваивания) было порядка
log n (то есть не превосходило бы
C log n для
некоторой константы C;
log n — это степень,
в которую нужно возвести 2, чтобы получить
n).
Два многоугольника на плоскости заданы координатами своих вершин.
Требуется вычислить площадь пересечения этих многоугольников, то есть
сумму площадей тех кусков, которые образуются при их пересечении и
принадлежат каждому из них. При этом вы можете предполагать, что:
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке