ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите формулу:

arccos x = $\displaystyle \left\{\vphantom{\begin{array}{ll}\arcsin \sqrt{1-x^2},&\mbox{есл...
...arcsin \sqrt{1-x^2},&\mbox{если }-1\leqslant x\leqslant 0.
\end{array}}\right.$$\displaystyle \begin{array}{ll}\arcsin \sqrt{1-x^2},&\mbox{если }0\leqslant
x...
...\  \pi-\arcsin \sqrt{1-x^2},&\mbox{если }-1\leqslant x\leqslant 0.
\end{array}$


Вниз   Решение


  Каждую пятницу десять джентльменов приходят в клуб, и каждый отдает швейцару свою шляпу. Каждая шляпа точно впору своему хозяину, но двух одинаковых по размеру шляп нет. Уходят джентльмены по одному в случайном порядке.
  Провожая очередного джентльмена, швейцар клуба пробует надеть ему на голову первую попавшуюся шляпу. Если налезает, джентльмен уходит в этой шляпе. Если мала, то швейцар пробует следующую случайную шляпу из оставшихся. Если все оставшиеся шляпы оказались малы, швейцар говорит бедняге: "Сэр, сегодня шляпа вам не к лицу", и джентльмен отправляется домой с непокрытой головой. Найдите вероятность того, что в следующую пятницу у швейцара не останется ни одной шляпы.

ВверхВниз   Решение


По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

ВверхВниз   Решение


Докажите, что имеют место следующие соотношения:

cos arcsin x = $\displaystyle \sqrt{1-x^2}$;    sin arccos x = $\displaystyle \sqrt{1-x^2}$;
tg arcctg x = $\displaystyle {\dfrac{1}{x}}$;    ctg arctg x = $\displaystyle {\dfrac{1}{x}}$;
cos arctg x = $\displaystyle {\dfrac{1}{\sqrt{1+x^2}}}$;    sin arctg x = $\displaystyle {\dfrac{x}{\sqrt{1+x^2}}}$;
cos arcctg x = $\displaystyle {\dfrac{x}{\sqrt{1+x^2}}}$;    sin arcctg x = $\displaystyle {\dfrac{1}{\sqrt{1+x^2}}}$.


ВверхВниз   Решение


Найдите соотношение между arcsin cos arcsin x и arccos sin arccos x.

ВверхВниз   Решение


Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

ВверхВниз   Решение


Докажите равенство:

arcsin x + arcsin y = $\displaystyle \eta$arcsin(x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$) + $\displaystyle \varepsilon$$\displaystyle \pi$,

где $ \eta$ = 1, $ \varepsilon$ = 0, если xy < 0 или x2 + y2 $ \leqslant$ 1; $ \eta$ = - 1, $ \varepsilon$ = - 1, если x2 + y2 > 1, x < 0, y < 0; $ \eta$ = - 1, $ \varepsilon$ = 1, если x2 + y2 > 1, x > 0, y > 0.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]      



Задача 104045

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2-
Классы: 7,8

  а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
  б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
  в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?

Прислать комментарий     Решение

Задача 104073

Темы:   [ Текстовые задачи (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 5,6,7,8

В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

Прислать комментарий     Решение

Задача 60400

 [Полиномиальная теорема]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3-
Классы: 9,10,11

Докажите, что в равенстве   (x1 + ... + xm)n  =   коэффициенты  C(k1,..., km)  могут быть найдены по формуле  

Прислать комментарий     Решение

Задача 30741

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

Прислать комментарий     Решение

Задача 30749

Темы:   [ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .