Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 61]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
|
|
Сложность: 5 Классы: 10,11
|
Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
|
|
Сложность: 2+ Классы: 6,7,8,9
|
Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?
Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?
Сколькими способами можно разделить на команды по 6 человек для игры в волейбол группу:
а) из 12; б) из 24 спортсменов?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 61]