ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 201]      



Задача 98282

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

Прислать комментарий     Решение

Задача 98538

Темы:   [ Простые числа и их свойства ]
[ Соображения непрерывности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например,  1001! + 2,  1001! + 3, ...,   1001! + 1001).
А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?

Прислать комментарий     Решение

Задача 104099

Темы:   [ Простые числа и их свойства ]
[ Квадратные неравенства и системы неравенств ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Найдите все простые числа р, для каждого из которых существует такое натуральное число m, что    – также натуральное число.

Прислать комментарий     Решение

Задача 108747

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Доказать, что наибольший общий делитель чисел вида  p4 – 1,  где p – простое число, большее 5, равен 240.

Прислать комментарий     Решение

Задача 109496

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .