ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 629]      



Задача 35818

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?

Прислать комментарий     Решение

Задача 35822

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 2
Классы: 6,7

а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.

Прислать комментарий     Решение

Задача 60627

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

Прислать комментарий     Решение

Задача 88077

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Два класса с одинаковым количеством учеников написали контрольную. Проверив контрольные, строгий директор Фёдор Калистратович сказал, что он поставил двоек на 13 больше, чем остальных оценок. Не ошибся ли строгий Фёдор Калистратович?

Прислать комментарий     Решение

Задача 88079

Темы:   [ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 6,7,8

Найдите два таких простых числа, что и их сумма, и их разность – тоже простые числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .