ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 205]      



Задача 35342

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7,8

На острове живут два племени: аборигены и пришельцы. Аборигены всегда говорят правду, а пришельцы всегда лгут. Путешественник, приехавший на остров, нанял островитянина в проводники. Они пошли и увидели другого островитянина. Путешественник послал проводника узнать, к какому племени принадлежит этот туземец. Проводник вернулся и сказал: "Туземец говорит, что он абориген". Кем был проводник: пришельцем или аборигеном?
Прислать комментарий     Решение


Задача 35676

Темы:   [ Математическая логика (прочее) ]
[ Неравенства. Метод интервалов ]
Сложность: 2+
Классы: 7,8,9

Пусть x - некоторое натуральное число. Среди утверждений: 2x больше 70;
x меньше 100;
3x больше 25;
x не меньше 10;
x больше 5;
три верных и два неверных. Чему равно x?
Прислать комментарий     Решение


Задача 35184

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8,9

На острове живут лжецы и рыцари, всего 2001 человек. Рыцари всегда говорят правду, а лжецы лгут. Каждый житель острова заявил: "Среди оставшихся жителей острова более половины - лжецы". Сколько лжецов на острове?
Прислать комментарий     Решение


Задача 66388

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

Трём мудрецам показали 9 карт: шестерку, семерку, восьмерку, девятку, десятку, валета, даму, короля и туза (карты перечислены по возрастанию их достоинства). После этого карты перемешали и каждому раздали по три карты. Каждый мудрец видит только свои карты. Первый сказал: "Моя старшая карта – валет". Тогда второй ответил: "Я знаю, какие карты у каждого из вас". У кого из мудрецов был туз?
Прислать комментарий     Решение


Задача 98670

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7

Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 205]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .