ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 152]      



Задача 52830

Темы:   [ Признаки подобия ]
[ Теорема косинусов ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая стороны AC и BC в точках M и N.
Найдите MN, если  BC = a,  AC = b,  AB = c.

Прислать комментарий     Решение

Задача 53738

Темы:   [ Признаки подобия ]
[ Перенос стороны, диагонали и т.п. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Боковая сторона AB трапеции ABCD разделена на пять равных частей, и через третью точку деления, считая от точки B, проведена прямая, параллельная основаниям BC и AD. Найдите отрезок этой прямой, заключённый между сторонами трапеции, если  BC = a  и  AD = b.

Прислать комментарий     Решение

Задача 53753

Темы:   [ Признаки подобия ]
[ Подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведена прямая BD так, что   ∠ABD = ∠C.  Найдите отрезки AD и DC, если  AB = 2  и  AC = 4.

Прислать комментарий     Решение

Задача 53761

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD сторона  AB = 420.  На стороне BC взята точка E так, что  BE : EC = 5: 7,  и проведена прямая DE, пересекающая продолжение AB в точке F. Найдите BF.

Прислать комментарий     Решение

Задача 53762

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

ABCD – данный параллелограмм. Через точку пересечения его диагоналей проведена перпендикулярная к BC прямая, которая пересекает BC в точке E, а продолжение AB – в точке F. Найдите BE, если  AB = a,  BC = b  и  BF = c.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .