Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 316]
Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?
Электрик был вызван для ремонта гирлянды из четырёх
соединённых последовательно лампочек, одна из которых перегорела. На
вывинчивание любой лампочки из гирлянды уходит 10 секунд, на завинчивание
-- 10 секунд. Время, которое тратится на другие действия, мало.
За какое наименьшее время электрик
заведомо может найти перегоревшую лампочку, если у него есть
одна запасная лампочка?
|
|
Сложность: 3 Классы: 7,8,9
|
Мама дала Васе денег на 30 карандашей. Оказалось, что в магазине
карандашная фабрика проводит рекламную акцию: в обмен на чек о покупке набора
из 20 карандашей возвращают 25% стоимости набора, а в обмен на чек
о покупке набора из 5 карандашей – 10%. Какое наибольшее число карандашей
может купить Вася?
|
|
Сложность: 3 Классы: 10,11
|
100 пиратов сыграли в карты на золотой песок, а потом каждый посчитал, сколько он в сумме выиграл либо проиграл. У каждого проигравшего хватает золота, чтобы расплатиться. За одну операцию пират может либо раздать всем поровну золота, либо получить с каждого поровну золота. Докажите, что можно за несколько таких операций добиться того, чтобы каждый получил (в сумме) свой выигрыш либо выплатил проигрыш. (Разумеется, общая сумма выигрышей равна сумме проигрышей.)
|
|
Сложность: 3 Классы: 7,8,9
|
Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 316]