ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 98]      



Задача 77913

Темы:   [ Классическая комбинаторика (прочее) ]
[ Числа Каталана ]
[ Системы точек и отрезков (прочее) ]
Сложность: 4+
Классы: 8,9

На окружности расположены 20 точек. Эти 20 точек попарно соединяются 10 хордами, не имеющими общих концов и непересекающихся.
Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 35215

Темы:   [ Классическая комбинаторика (прочее) ]
[ Неопределено ]
Сложность: 5-
Классы: 9,10,11

Множество M есть объединение k попарно непересекающихся отрезков, лежащих на одной прямой. Известно, что любой отрезок длины, не большей 1, можно расположить на прямой так, чтобы его концы принадлежали множеству M. Докажите, что сумма длин отрезков, составляющих M, не меньше 1/k.

Прислать комментарий     Решение

Задача 65883

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 5
Классы: 9,10,11

Автор: Петров Ф.

На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.

Прислать комментарий     Решение

Задача 60428

Темы:   [ Дискретное распределение ]
[ Классическая комбинаторика (прочее) ]
[ Условная вероятность ]
Сложность: 2
Классы: 8,9,10

В ящике имеется 10 белых и 15 чёрных шаров. Из ящика вынимаются четыре шара. Какова вероятность того, что все вынутые шары будут белыми?

Прислать комментарий     Решение

Задача 30327

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2+
Классы: 6,7

Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .