Страница:
<< 170 171 172 173
174 175 176 >> [Всего задач: 1110]
|
|
Сложность: 3- Классы: 8,9,10
|
Петя играет в игру-стрелялку. Если он наберёт менее 1000 очков, то компьютер добавит ему 20% от его результата. Если он наберёт от 1000 до 2000 очков, то компьютер добавит ему 20% от первой тысячи очков и 30% от оставшегося количества очков. Если Петя наберёт более 2000 очков, то компьютер добавит ему 20% от первой тысячи очков, 30% от второй тысячи и 50% от оставшегося количества. Сколько призовых очков получил Петя, если по окончании игры у него было 2370 очков?
|
|
Сложность: 3- Классы: 7,8,9
|
В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на
утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.
Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у
проигравшей команды больше, чем у выигравшей?
Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?
|
|
Сложность: 3- Классы: 7,8,9
|
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Страница:
<< 170 171 172 173
174 175 176 >> [Всего задач: 1110]