Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 512]
В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4.
Найдите площадь четырёхугольника AMCD.
Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP
этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Найдите отношение площади трапеции KLMN к площади треугольника KPR, где R – точка пересечения прямой PN и стороны KL.
Через точку O пересечения медиан треугольника ABC проведена
прямая, пересекающая его стороны в точках M и N. Докажите, что
NO ≤ 2MO.
Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N.
Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD.
Из центра каждой из двух данных окружностей проведены касательные к другой окружности.
Докажите, что хорды, соединяющие точки пересечения касательных с окружностями, (см. рис.) равны.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 512]