Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 51]
|
|
Сложность: 3+ Классы: 8,9,10
|
Репьюнитами называются числа
Докажите, что если (m, 10) = 1, то частное 9En/m, записанное как n-значное число (возможно с нулями в начале),
состоит из нескольких периодов десятичного представления дроби 1/m. Кроме того, если еще выполнены условия (m, 3) = 1 и En – первый репьюнит, делящийся на m, то число 9En/m будет совпадать с периодом.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9.
|
|
Сложность: 3+ Классы: 9,10,11
|
Обозначим через L(m) длину периода дроби 1/m. Докажите, что если (m, 10) = 1, то L(m) является делителем числа φ(m).
|
|
Сложность: 3+ Классы: 10,11
|
Найдите последние три цифры периодов дробей 1/107, 1/131, 1/151. (Это можно сделать, не считая предыдущих цифр.)
|
|
Сложность: 3+ Классы: 6,7,8
|
В сумме
П,Я + Т,Ь + Д,Р + О,Б + Е,Й
все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно?
Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 51]