|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ |
Задача 107699
УсловиеПетя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?РешениеПете достаточно проверить, можно ли составить треугольник из двух самых коротких палочек и одной самой длинной. Если треугольник не составляется, то утверждение инструкции опровергнуто. Если же треугольник составить можно, то сумма длин двух самых коротких палочек больше длины самой длинной. Но в этом случае сумма длин двух любых палочек набора длиннее любой другой. (Действительно, сумма длин двух любых не меньше суммы длин самых коротких, а длина любой палочки не больше длины самой длинной.) А это и означает, что из любых палочек можно составить треугольник, т. е. утверждение инструкции доказано.ОтветОдна проверка.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|