|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура. |
Задача 78142
УсловиеКакое наибольшее число осей симметрии может иметь пространственная фигура, состоящая из трёх прямых, из которых никакие две не параллельны и не совпадают?РешениеПространственная фигура, состоящая из двух не параллельных и не совпадающих прямых l1 и l2, имеет ровно три оси симметрии. Действительно, рассмотрим плоскостьИсточники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|