|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В Тридевятом царстве на каждом перекрёстке сходится ровно три дорожки. Было у царя три сына, старшие умные, а младший Иван – дурак. Послал старик сыновей за молодильными яблоками. Старший, выйдя из дворца, на первом перекрёстке свернул налево, на следующем направо, потом налево, снова направо – и дошёл до волшебной яблони. Средний на первом перекрёстке свернул направо, потом налево, снова направо, снова налево – и тоже дошёл до этой яблони. А Иван на всех перекрёстках поворачивал направо, три раза повернул да и пришёл обратно во дворец несолоно хлебавши. Нарисуйте пример, как может выглядеть схема дорожек в Тридевятом царстве, если известно, что и от царского дворца, и от яблони отходит ровно по одной дорожке. |
Задача 102483
УсловиеПлощадь трапеции ABCD с основаниями AD и BC (AD > BC) равна 48, а площадь треугольника AOB, где O — точка пересечения диагоналей трапеции, равна 9. Найдите отношение оснований трапеции AD : BC.
Подсказка
S
РешениеЗаметим, что треугольники ABD и ACD равновелики, т.к. у них общее основание и равные высоты. Значит, равновелики треугольники COD и AOB.
Пусть
S
а т.к.
S
получаем уравнение
9x +
Ответ3.
Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|