|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике $ABC$ через центр $I$ вписанной окружности $w$ провели прямую, параллельную стороне $BC$, до пересечения с вписанной окружностью в точках $A_B$ и $A_C$ ($A_B$ находится в той же полуплоскости относительно прямой $AI$, что и точка $B$). После этого нашли точку пересечения прямых $BA_B$ и $CA_C$ и обозначили её через $A_1$. Аналогично построили точки $B_1$ и $C_1$. Докажите, что прямые $AA_1$, $BB_1$, $CC_1$ пересекаются в одной точке. В каждой клетке доски размером 5×5 стоит крестик или нолик, причём никакие три крестика не стоят подряд ни по горизонтали, ни по вертикали, ни по диагонали. Какое наибольшее количество крестиков может быть на доске? |
Задача 115962
УсловиеНайдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.РешениеТак как x + y + x 2 y + xy 2 = x + y + xy (x + y) = (x + y)(xy + 1) = 24,
то используя условие x + y = 5, получим, что xy = 3,8. Ответ68.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|