|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад? |
Задача 110942
УсловиеДва квадрата ABCD и KLMN расположены в пространстве так, что центр квадрата KLMN совпадает с серединой стороны AB . Точка A лежит на стороне LM и AM<AL , точка N равноудалена от точек B и C . Расстояние от точки M до ближайшей к ней точки квадрата ABCD равно 2РешениеПусть O – середина стороны AB квадрата ABCD (рис.2). Поскольку точка O – центр квадрата KLMN и точка A лежит на стороне ML этого квадрата, точка B , симметричная точке A относительно O , лежит на противоположной стороне KN квадрата KLMN , причём AM = BK = 5 . Обозначим AB =a ,Поэтому Пусть N' – ортогональная проекция точки N на плоскость квадрата ABCD (рис.1). Тогда N'B и N'C – проекции на плоскость ABCD равных наклонных NC и NB , поэтому N'B=N'C . Значит, высота N'Q равнобедренного треугольника BN'C является его медианой, т.е. BQ=CQ = Поскольку BPN'Q – прямоугольник, N'P=BQ= откуда Пусть M' – проекция точки M на плоскость квадрата ABCD , а G и H – проекции точки M' на прямые AB и AD соответственно. Тогда MGM' – также линейный угол между плоскостями данных квадратов, поэтому а т.к. H есть ближайшая к M точка квадрата ABCD , то MH=2 Из системы находим, что tg α = (по теореме о внешнем угле треугольника), то tg α > 1 , поэтому tg α = Применяя теорему синусов к треугольнику BOK получим, что Следовательно, Пусть E – проекция точки A на прямую KN . Тогда Наконец, из прямоугольного треугольника NN'P находим, что Ответ10Источники и прецеденты использования
|
|||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|