Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?

Вниз   Решение


Король стоит на поле a1 шахматной доски. За ход разрешается сдвинуть его на одну клетку вправо, или на одну клетку вверх, или на одну клетку вправо-вверх. Выигрывает тот, кто поставит короля на клетку h8. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?

ВверхВниз   Решение


Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

ВверхВниз   Решение


Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...

Вверх   Решение

Задача 73739
Темы:    [ Дискретное распределение ]
[ Десятичная система счисления ]
[ Показательные неравенства ]
Сложность: 5+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, 7, 3, и плохим — в противном случае. (Например, число 197 639 917 — плохое, а 116 519 732 — хорошее.) Докажите, что существует такое натуральное число n, что среди всех n-значных чисел (от 10n – 1 до 10n – 1) больше хороших, чем плохих.

Постарайтесь найти возможно меньшее такое n.

Решение

Решению задачи M204 посвящена отдельная заметка на с.35-40.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1973
выпуск
Номер 5
Задача
Номер М204

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .