ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

   Решение

Задача 60490
Темы:    [ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Пусть  (a, b) = 1  и  a | bc.  Докажите, что  a | c.


Решение

Согласно задаче 60488  au + bv = 1  для некоторых целых u и v. Домножив это равенство на c, получаем равенство  acu + bcv = c.  Левая часть этого равенства делится на a, значит, на a делится и правая часть, то есть c.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 2
Название Алгоритм Евклида
Тема Алгоритм Евклида
задача
Номер 03.038

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .