|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В круге проведены два перпендикулярных диаметра, т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых служат эти радиусы. Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырех кругов (рис.). |
Задача 55063
УсловиеВ трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём MC = 2MD. N – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции. Решение SADC = 1/3 SABC = ¼ SABCD, поскольку AB = 3 CD. Ответ1 : 33. Источники и прецеденты использования
|
|||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|