ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круге проведены два перпендикулярных диаметра, т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых служат эти радиусы. Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырех кругов (рис.).


   Решение

Задача 55063
Темы:    [ Отношение площадей треугольников с общим углом ]
[ Трапеции (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём  MC = 2MDN – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции.


Решение

  SADC = 1/3 SABC = ¼ SABCD,  поскольку  AB = 3 CD.
  Из подобия треугольников MNC и BNA следует, что  MN : NB = MC : AB = 2 : 9.
  Поэтому  SMNC = 2/3·2/11 SADC = 1/33 SABCD.


Ответ

1 : 33.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3119

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .