|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Разделить a2k – b2k на (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1). Пусть P(x) – многочлен степени n > 1 с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен |
Задача 32116
УсловиеПусть a, b, c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что aα + bβ + cγ ≥ aβ + bγ + cα.РешениеПоскольку в треугольнике против большего угла лежит большая сторона, утверждение задачи представляет собой частный случай транснеравенства (см. задачу 61385). Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|