ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Может ли в сечении какого-то тетраэдра двумя разными плоскостями получиться два квадрата: один – со стороной, не большей 1, а другой – со стороной, не меньшей 100?

Вниз   Решение


Автор: Антонов М.

Лабиринт представляет собой квадрат 8×8, в каждой клетке 1×1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево). Верхняя сторона правой верхней клетки – выход из лабиринта. В левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой. После каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90° по часовой стрелке. Если фишка должна сделать ход, выводящий ее за пределы квадрата 8×8, она остается на месте, а стрелка также поворачивается на 90° по часовой стрелке. Докажите, что рано или поздно фишка выйдет из лабиринта.

Вверх   Решение

Задача 77946
Тема:    [ Неравенства с модулями ]
Сложность: 3-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.

Решение

По условию 1 - x > 0, 1 + x > 0, 1 - y > 0 и 1 + y > 0. Поэтому (1 - x)(1 + y) > 0 и (1 + x)(1 - y) > 0, т.е. 1 - x + y - xy > 0 и 1 + x - y - xy > 0. Следовательно, 1 - xy > x - y и 1 - xy > y - x. Кроме того, 1 - xy = | 1 - xy|.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 15
Год 1952
вариант
Класс 9
Тур 1
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .