ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Вниз   Решение


Двое играют на доске 19×94 клеток. Каждый по очереди отмечает квадрат по линиям сетки (любого возможного размера) и закрашивает его. Выигрывает тот, кто закрасит последнюю клетку. Дважды закрашивать клетки нельзя. Кто выиграет при правильной игре и как надо играть?

Вверх   Решение

Задача 32885
Темы:    [ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?


Решение

Например,  207 = 2 + 3 + 5 + 41 + 67 + 89 = 2 + 3 + 5 + 47 + 61 + 89 = 2 + 5 + 7 + 43 + 61 + 89.


Ответ

Можно.

Замечания

1. Все чётные цифры, кроме цифры 2, должны стоять в разряде десятков (иначе соответствующее число не будет простым).
Сумма будет наименьшей, если все остальные числа будут стоять в разряде единиц; можно показать, что в остальных случаях сумма будет не меньше 225.

2. Других примеров нет.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2013
Номер 76
класс
Класс 8
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .