ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1. Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла? Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга? |
Задача 65570
УсловиеДан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB РешениеПусть прямая AB пересекает отрезок KN в точке T. Заметим, что отрезок KC пересекает отрезок MN в середине. Поскольку отрезок LT параллелен MN, то он отсекает от треугольника MKN подобный треугольник LKT, и поэтому KC пересекает LT тоже в середине. Следовательно, прямоугольные треугольники ANT и ANL равны по двум катетам. Поэтому ∠LNA = ∠TNA = ∠KNA. ЗамечанияБаллы: 8-9 кл. – 5, 10-11 кл. – 4. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке