|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что треугольник ABC остроугольный тогда и только тогда, когда на его сторонах BC, CA и AB можно выбрать такие внутренние точки A1, B1 и C1, что AA1 = BB1 = CC1. |
Задача 58063
УсловиеМногоугольник M' гомотетичен многоугольнику M с коэффициентом гомотетии -1/2. Докажите, что существует параллельный перенос, переводящий многоугольник M' внутрь многоугольника M.РешениеПусть ABC — треугольник наибольшей площади с вершинами в вершинах многоугольника M. Тогда многоугольник M содержится внутри треугольника A1B1C1, серединами сторон которого являются точки A, B и C. При гомотетии с центром в центре масс треугольника ABC и коэффициентом -1/2 треугольник A1B1C1 переходит в треугольник ABC, поэтому многоугольник M переходит внутрь треугольника ABC.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|