|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Какое наибольшее количество прямоугольников 4*1 можно разместить в квадрате 6*6 (не нарушая границ клеток)? Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение). Существуют ли целые числа m и n, удовлетворяющие уравнению m² + 1954 = n²? |
Задача 56749
УсловиеТочка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.РешениеСумма площадей треугольников $ABX$ и $CDX$ равна половине произведения стороны $AB$ на сумму расстояний от точки $X$ до параллельных прямых $AB$ и $CD$, то есть равна половине произведения стороны $AB$ на высоту параллелограмма, перпендикулярную $AB$. То есть сумма площадей треугольников $ABX$ и $CDX$ равна половине площади параллелограмма $ABCD$; значит, сумма оставшихся треугольников также равна половине площади параллелограмма.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|