Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
|
Сложность: 2- Классы: 8,9,10
|
Докажите, что площадь выпуклого четырехугольника
равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.
Пусть E и F — середины сторон BC и AD
параллелограмма ABCD. Найдите площадь четырехугольника, образованного
прямыми AE, ED, BF и FC, если известно, что площадь ABCD равна S.
Многоугольник описан около окружности радиуса r.
Докажите, что его площадь равна pr, где p — полупериметр
многоугольника.
Точка $X$ расположена внутри параллелограмма $ABCD$.
Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.
Пусть
A1, B1, C1 и D1 — середины
сторон
CD, DA, AB, BC квадрата ABCD, площадь которого равна S.
Найдите площадь четырехугольника, образованного
прямыми
AA1, BB1, CC1 и DD1.
Страница: 1 2 3 4 5 >> [Всего задач: 22]