ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольники ABC и A1B1C1 имеют соответственно параллельные стороны, причем стороны AB и A1B1 лежат на одной прямой. Докажите, что прямая, соединяющая точки пересечения описанных окружностей треугольников A1BC и AB1C, содержит точку C1.

   Решение

Задача 57481
Тема:    [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8
В корзину
Прислать комментарий

Условие

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.

Решение

Высота любого треугольника больше 2r. Кроме того, в прямоугольном треугольнике 2r = a + b - c (задача 5.15).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 11
Название Неравенства для прямоугольных треугольников
Тема Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников
задача
Номер 10.070

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .