Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Вниз   Решение


Окружность C1 радиуса 2$ \sqrt{3}$ с центром O1 и окружность C2 радиуса $ \sqrt{3}$ с центром O2 расположены так, что O1O2 = 2$ \sqrt{13}$. Прямая l1 касается окружностей в точках A1 и A2, а прямая l2— в точках B1 и B2. Окружности C1 и C2 лежат по одну сторону от прямой l1 и по разные стороны от прямой l2, A1 $ \in$ C1, B1 $ \in$ C1, A2 $ \in$ C2, B2 $ \in$ C2, точки A1 и B1 лежат по разные стороны от прямой O1O2. Через точку B1 проведена прямая l3, перпендикулярная прямой l2. Прямая l1 пересекает прямую l2 в точке A, а прямую l3 — в точке B. Найдите A1A2, B1B2 и стороны треугольника ABB1.

Вверх   Решение

Задача 65294
Темы:    [ Процессы и операции ]
[ Полуинварианты ]
[ Неравенство Коши ]
[ Средние величины ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.


Решение

Рассмотрим длины дуг между соседними точками. В силу неравенства  a² + b² > (a+b/2)²  (при  a ≠ b)  сумма квадратов этих дуг каждую секунду уменьшается. Следовательно, многоугольник никогда не станет таким же, как был.

Замечания

Дисперсия набора длин дуг также уменьшается.

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2009
задача
Номер 18

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .