ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если
ac - b2 ≠ 0, то с помощью параллельного переноса
x' = x + x0, y' = y + y0 уравнение Q(x, y) + 2dx + 2ey = f, где Q (x, y) = ax2 + 2bxy + cy2 можно привести к виду
ax'2 + 2bx'y' + cy'2 = f',
где f' = f - Q(x0, y0) + 2(dx0 + ey0). Существуют ли три таких различных простых числа p, q, r, что p² + d делится на qr, q² + d делится на rp, r² + d делится на pq, если
|
Задача 52907
Условие
В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.
Подсказка
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и своей проекцией на гипотенузу. Примените эту теорему к каждому из двух прямоугольных треугольников, на которые указанная высота разбивает данный треугольник.
Решение
Пусть M — основание высоты CM треугольника ABC, BC = 75, AC = 100, BD и AE — искомые отрезки. Тогда
AB =
Отрезок MD — высота прямоугольного треугольника BMC,
опущенная из вершины прямого угла M на гипотенузу BC, поэтому
MC2 = CD . CB, или 602 = (75 - BD)75.
Откуда находим, что BD = 27. Аналогично найдём AE.
Ответ
27 и 64.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке