|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю. |
Задача 60722
УсловиеДокажите, что числа p и p + 2 являются простыми числами-близнецами тогда и только тогда, когда 4((p – 1)! + 1) + p ≡ 0 (mod p² + 2p). Решение Согласно задачам 60719 и 60458 число
p – простое ⇔ (p – 1)! + 1 ≡ 0 (mod p) ⇔ 4((p – 1)! + 1) + p ≡ 0 (mod p). Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|