Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.

Вниз   Решение


Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Вверх   Решение

Задача 79251
Темы:    [ Покрытия ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8
В корзину
Прислать комментарий

Условие

Дан остроугольный треугольник ABC. Его покрывают тремя кругами, центры которых лежат в вершинах, а радиусы равны высотам, проведённым из этих вершин. Доказать, что каждая точка треугольника покрыта хотя бы одним из кругов.

Решение

Опустим из точки пересечения высот треугольника ABC перпендикуляры на его стороны. В результате треугольник разобьётся на три четырёхугольника. Каждый из этих четырёхугольников полностью покрыт кругом, центр которого является одной из вершин четырёхугольника.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 36
Год 1973
вариант
Класс 7
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .