|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.) |
Задача 67216
УсловиеПусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$.РешениеИз условия следует, что $\angle BHE=\angle CHF=\pi/2$, следовательно, треугольники $BHE$ и $CHF$ подобны и $AF:EB=EH:EB=HF:FC=AE:EC$. Поэтому $AE\cdot EB=AF\cdot FC$, т.е. степени точек $E$ и $F$ относительно описанной окружности равны и середина $D$ отрезка $AH$ является также серединой $XY$. Поэтому средняя линия $OD$ треугольника $AHZ$ перпендикулярна $XY$. Значит, $ZH$ – высота треугольника $XYZ$, а поскольку точка $A$, симметричная $H$ относительно середины $XY$, лежит на описанной окружности, то $H$ – ортоцентр.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|