ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают. Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников. |
Задача 56802
УсловиеДлины сторон треугольника образуют арифметическую
прогрессию. Докажите, что радиус вписанной окружности
равен трети одной из высот треугольника.
РешениеПусть длины сторон треугольника ABC равны a, b и c,
причем
a Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке