|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Для данной хорды MN окружности рассматриваются треугольники ABC, основаниями которых являются диаметры AB этой окружности, не пересекающие MN, а стороны AC и BC проходят через концы M и N хорды MN. Докажите, что высоты всех таких треугольников ABC, опущенные из вершины C на сторону AB, пересекаются в одной точке.
|
Задача 55000
УсловиеЧерез точки R и E, принадлежащие сторонам AB и AD
параллелограмма ABCD и такие, что AR = ⅔ AB,
AE = ⅓ AD, проведена прямая. ПодсказкаНайдите отношение площадей треугольников ARE и ABD. РешениеSABCD = 2 SABD = 2·1,5·3 SARE = 9 SARE.
Ответ9 : 1. Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|