Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66675
Темы:    [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Дан треугольник ABC и окружность γ с центром в точке A, которая пересекает стороны AB и AC. Пусть общая хорда описанной окружности треугольника и окружности γ пересекает стороны AB и AC в точках X и Y соответственно. Отрезки CX и BY пересекают γ в точках S и T соответственно. Описанные окружности треугольников ACT и BAS пересекаются в точках A и P. Докажите, что прямые CX, BY, и AP пересекаются в одной точке.

Решение

Пусть U – вторая точка пересечения прямой BY с γ. Так как TU, AC и общая хорда окружностей ABC и γ пересекаются в точке Y, AYCY=TYUY, т.е. A, U, C, T лежат на одной окружности. Аналогично A, B, S и вторая точка пересечения прямой CX с γ лежат на одной окружности. Следовательно, прямые CX, BY, и AP пересекаются в одной точке как радикальные оси окружностей γ, ACT и BAS.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2018
класс
Класс 9
задача
Номер 9.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .