|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать?
|
Задача 116904
УсловиеЧерез вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке. РешениеПроведём через A1, B1 и C1 прямые a, b и c, параллельные соответственно BC, CA и AB; покажем, что они вторично пересекают описанную окружность в одной и той же точке. Действительно, пусть c пересекает окружность вторично в точке P (если она касается окружности, то P = C1). Тогда, поскольку AB || C1P и AA1 || CC1, (направленные) дуги BP, C1A и A1C равны. Это и означает, что A1P || BC, то есть a проходит через P. Аналогично b проходит через P (см. рис.). Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|