ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Вниз   Решение


Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

ВверхВниз   Решение


Основание правильной четырёхугольной пирамиды – квадрат со стороной 8. Высота пирамиды равна 9. Через сторону основания проведена плоскость, образующая с плоскостью основания угол, равный arctg . Найдите площадь сечения пирамиды этой плоскостью.

ВверхВниз   Решение



В правильной шестиугольной пирамиде, у которой боковые стороны - квадраты, проведите плоскость через сторону нижнего основания и противолежащую ей сторону верхнего основания. Найдите площадь построенного сечения, если сторона основания равна a.

ВверхВниз   Решение


В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?

ВверхВниз   Решение


В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?

ВверхВниз   Решение


Высота равнобедренной трапеции ABCD с основаниями AD и BC равна 4 , диагонали трапеции пересекаются в точке O , AOD = 120o . Найдите среднюю линию трапеции.

ВверхВниз   Решение


Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 136]      



Задача 64942

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

Прислать комментарий     Решение

Задача 53463

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что биссектрисы двух внешних углов и третьего внутреннего угла треугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54096

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Противоположные стороны шестиугольника попарно равны и параллельны.
Докажите, что отрезки, соединяющие противоположные вершины, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65797

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Панов М.Ю.

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.

Прислать комментарий     Решение

Задача 66072

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Системы точек и отрезков (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10,11

На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .