Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 136]
|
|
Сложность: 4- Классы: 9,10,11
|
Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что KO ⊥ AC.
В остроугольном треугольнике ABC проведена высота CH. Оказалось, что AH = BC.
Докажите, что биссектриса угла B, высота, опущенная из вершины A, и прямая, проходящая через точку H параллельно BC, пересекаются в одной точке.
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1
соответственно. Точки A2, B2, C2 – середины дуг BAC, CBA, ACB описанной окружности треугольника ABC. Докажите, что прямые A1A2, B1B2 и C1C2 пересекаются в одной точке.
Докажите, что если перпендикуляры, восставленные из оснований биссектрис соответствующим сторонам треугольника, пересекаются в одной точке, то треугольник равнобедренный.
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC: ∠B = 22,5°, ∠C = 45°. Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 136]