|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади. В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой. Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 136]
Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в одной точке.
Окружность, проходящая через вершины A и C треугольника ABC, пересекает сторону AB в её середине D, а сторону BC – в точке E. Окружность, проходящая через точку E и касающаяся в точке C прямой AC, пересекает прямую DE в точке F. K – точка пересечения прямых AC и DE.
Отрезки AB и CD не параллельны и не пересекаются. Точка P лежит на отрезке AB, а точка Q – на отрезке CD. Точки K, L, M и N – середины отрезков AQ, BQ, CP и DP соответственно. Докажите, что отрезки KL, MN и PQ пересекаются в одной точке.
Пусть I и IA – соответственно центры вписанной и вневписанной окружностей треугольника ABC. Прямая lA проходит через ортоцентры треугольников BIC и BIAC. Аналогичным образом определяются прямые lB и lC . Докажите, что прямые lA, lB и lC пересекаются в одной точке.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 136] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|