ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66072
Темы:    [ Три прямые, пересекающиеся в одной точке ]
[ Системы точек и отрезков (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке.


Решение

См. задачу 66116.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 80
Год 2017
класс
Класс 8
1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .