ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65797
Темы:    [ Три прямые, пересекающиеся в одной точке ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Автор: Панов М.Ю.

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.


Решение

Пусть O1P1 и O2P2 пересекают AB в точках K1 и K2. Тогда по теореме Фалеса  AK1 : K1B = AP1 : P1C,  AK2 : K2B = CP2 : P2B.  Но эти отношения равны в силу подобия треугольников AРC и CHB.

Замечания

Из решения следует также, что точка пересечения указанных прямых является точкой касания вписанной в треугольник ABC окружности с гипотенузой (см. рис.).

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по геометрии
год
Год 2016
тур
задача
Номер 9

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .