Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.

   Решение

Задача 98315
Темы:    [ Четность и нечетность ]
[ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?


Подсказка

См. задачу 98326.

Замечания

баллы: 2 + 2

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 18
Дата 1996/1997
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .