|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Для данного многочлена P(x) опишем способ, который позволяет
построить многочлен R(x), который имеет те же корни, что и
P(x), но все кратности 1. Положим Q(x) = (P(x), P'(x)) и R(x) = P(x)Q–1(x). Докажите, что Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого i = 1, 2, ..., n в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем An+1 = A1). Докажите, что построенные треугольники покрывают всё основание. |
Задача 30778
УсловиеВ ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа. Решение Каждая пара (a, b) чисел может находиться в двух состояниях: правильном, когда меньшее число стоит левее, и неправильном, когда меньшее число стоит правее. Если между числами a и b стоит ровно k чисел, и мы поменяем a и b местами, то ровно 2k + 1 пара поменяет свое состояние: сама пара (a, b) и все пары, содержащие одно из чисел a, b и одно из k промежуточных чисел. Поэтому каждая операция меняет четность числа неправильных пар. ОтветНе может. Замечания1. Ср. с задачей 30311. 2. Мы фактически воспроизвели доказательство известного факта: транспозиция меняет чётность перестановки. На него, конечно, можно просто сослаться. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|