ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны окружность S и точки A и B вне ее. Для каждой прямой l, проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B.

   Решение

Задача 115333
Тема:    [ Периметр треугольника ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Большой треугольник разбит тремя жирными отрезками на четыре треугольника и три четырёхугольника. Сумма периметров четырёхугольников равна 25 см. Сумма периметров четырёх треугольников равна 20 см. Периметр исходного большого треугольника равен 19 см. Найдите сумму длин жирных отрезков.


Решение

Сумма периметров всех треугольников и четырёхугольников равна периметру большого треугольника плюс удвоенная сумма длин жирных отрезков. Значит, эта сумма равна  (25 + 20 – 19) : 2 = 13.


Ответ

13 см.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6337

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .